ST. VIVEKANAND PUBLIC SCHOOL, SADABAD

CONTINUITY AND DIFFERENTIABILITY (CONTINUITY)

Class 12 - Mathematics

Section A

1. Find the value of $\mathrm{f}(0)$, so that the function $f(x)=\frac{\sqrt{a^{2}-a x+x^{2}}-\sqrt{a^{2}+a x+x^{2}}}{\sqrt{a+x}-\sqrt{a-x}}$ becomes continuous for all x , given by
a) $a^{1 / 2}$
b) $-a^{1 / 2}$
c) $a^{3 / 2}$
d) $-a^{3 / 2}$
2. The function $f(x)=\left\{\begin{array}{ccc}x^{2} a & , & 0 \leq x<1 \\ a & , & 1 \leq x<\sqrt{2} \\ \frac{2 b^{2}-4 b}{x^{2}} & , \quad \sqrt{2} \leq x<\infty\end{array}\right.$ is continuous for $0 \leq x<\infty$, then the most suitable values of a and b are
a) $\mathrm{a}=-1, \mathrm{~b}=1$
b) $\mathrm{a}=-1, \mathrm{~b}=1^{+}$
c) $\mathrm{a}=-1, \mathrm{~b}=-1$
d) none of these
3. Let $f(x)=\left\{\begin{array}{cl}\frac{1}{|x|} & \text { for }|x| \geq 1 \\ a x^{2}+b & \text { for }|x|<1\end{array}\right.$ If $\mathrm{f}(\mathrm{x})$ is continuous and differentiable at any point, then
a) $\mathrm{a}=1, \mathrm{~b}=-1$
b) $a=\frac{1}{2}, b=-\frac{3}{2}$
c) $\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{3}{2}$
d) none of these
4. The function $f(x)=\cot x$ is discontinuous on the set
a) $\left\{x=(2 n+1) \frac{\pi}{2} ; n \in \mathbf{Z}\right\}$
b) $\{x=2 n \pi: n \in \mathbf{Z}\}$
c) $\left\{x=\frac{n \pi}{2} ; n \in \mathbf{Z}\right\}$
d) $\{x=n \pi: n \in \mathbf{Z}\}$
5. Find the value of $\mathrm{f}(0)$, so that the function $f(x)=\frac{(27-2 x)^{1 / 3}-3}{9-3(243+5 x)^{1 / 5}}(x \neq 0)$ is continuous, is given by
a) 6
b) $\frac{2}{3}$
c) 4
d) 2
6. If $f(x)=\left\{\begin{array}{cc}\frac{\sin (\cos x)-\cos x}{(\pi-2 x)^{2}} & , x \neq \frac{\pi}{2} \\ k & , x=\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$, then k is equal to
a) 1
b) -1
c) 0
d) $\frac{1}{2}$
7. The function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}1+x, \text { when } x \leq 2 \\ 5-x, \text { when } x>2\end{array}\right.$ is continuous and differentiable at $\mathrm{x}=2$, yes or no
a) Differentiable but not continuous at $x=2$
b) Continuous as well as differentiable at $\mathrm{x}=2$
c) Continuous but not differentiable at $\mathrm{x}=2$
d) None of these
8. If $f(x)=\left\{\begin{array}{cl}\frac{\log (1+a x)-\log (1-b x)}{x} & , x \neq 0 \\ k & , x=0\end{array}\right.$ and $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=0$, then the value of k is
a) a - b
b) $a+b$
c) $\log a+\log b$
d) none of these
9. If $f(x)=\left\{\begin{array}{ll}m x+1, & \text { if } x \leq \frac{\pi}{2} \\ \sin x+n, & \text { if } x>\frac{\pi}{2}\end{array}\right.$ is continuous at $x=\frac{\pi}{2}$ then
a) $m=n=\frac{\pi}{2}$
b) $n=\frac{m \pi}{2}$
c) $m=1, n=0$
d) $m=\frac{n \pi}{2}+1$
10. The function $f(x)=\frac{\sin (\pi[x-\pi])}{4+[x]^{2}}$, where [.] denotes the greatest integer function, is
a) differentiable for all x but not continuous at
b) none of these some x .
c) continuous for all x but not differentiable at some x
d) continuous as well as differentiable for all x $\in \mathrm{R}$
11. The function $f(x)=|\cos x|$ is
a) everywhere continuous but not
b) everywhere continuous and differentiable differentiable at $(2 n+1) \frac{\pi}{2}, n \in Z$
c) neither continuous nor differentiable at (2 n
d) none of these
+1) $\frac{\pi}{2}, \mathrm{n} \in \mathrm{Z}$
12. The function $f(x)=\frac{4-x^{2}}{4 x-x^{3}}$ is
a) none of these
b) discontinuous at only one point
c) discontinuous at exactly two points
d) discontinuous at exactly three points
13. Determine the value of the constant k so that the function $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-3 x+2}{x-1} & , \text { if } x \neq 1 \\ k & , \text { if } x=1\end{array}\right.$ is continuous at $\mathrm{x}=$ 1
14. Determine the value of ' k ' for which the following function is continuous at $\mathrm{x}=3: \mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}\frac{(x+3)^{2}-36}{x-3}, x \neq 3 \\ k \quad, x=3\end{array}\right.$.
15. Discuss the continuity of the function $\mathrm{f}(\mathrm{x})$ given $\operatorname{by}(\mathrm{x})=\left\{\begin{array}{ll}2-x, & x<2 \\ 2+x, & x \geq 2\end{array}\right.$ at $\mathrm{x}=2$.
16. Discuss the continuity of the function f defined by $\mathrm{f}(\mathrm{x})=\frac{1}{x}, x \neq 0$
17. Discuss the continuity of $f(x)=\left\{\begin{array}{ll}2 x-1, & x<0 \\ 2 x+1, & x \geq 0\end{array}\right.$ at $\mathrm{x}=0$.
18. Determine $f(0)$ so that the function $f(x)$ defined by $f(x)=\frac{\left(4^{x}-1\right)^{3}}{\sin \frac{x}{4} \log \left(1+\frac{x^{2}}{3}\right)}$ becomes continuous at $\mathrm{x}=0$.
19. Show that the function f defined by $f(x)=\left\{\begin{array}{c}x \sin \frac{1}{x}, x \neq 0 \\ 0, x=0\end{array}\right.$ is continuous at $\mathrm{x}=0$.
20. Show that $f(x)=x^{3}$ is continuous at $x=2$.
21. Examine the function for continuity.

$$
f(x)=\frac{1}{x-5}, x \neq 5
$$

22. If the function $f(x)=\frac{\sin 10 x}{x}, x \neq 0$ is continuous at $\mathrm{x}=0$, find $\mathrm{f}(0)$.

Section B

23. Find the points of discontinuity, if any, of the function: $f(x)=\left\{\begin{array}{cc}\frac{x^{4}+x^{3}+2 x^{2}}{\tan ^{-1} x} & , \text { if } x \neq 0 \\ 10 \quad, & \text { if } x=0\end{array}\right.$
24. Find the value of k so that the function f is continuous at the indicated point: $f(x)=\left\{\begin{array}{c}3 x-8, \text { if } x \leqslant 5 \\ 2 k, \text { if } x>5\end{array}\right.$ at x $=5$.
25. Prove that the function defined by $\mathrm{f}(\mathrm{x})=\tan \mathrm{x}$ is a continuous function.
26. Find the value of k for which $f(x)=\left\{\begin{array}{cl}k x+5, & \text { when } x \leq 2 \\ x-1, & \text { when } x>2\end{array}\right.$ is continuous at $\mathrm{x}=2$.
27. Show that sec x is a continuous function.
28. Show that the function $f(x)=2 x-|x|$ is continuous at $x=0$.
29. Discuss the continuity of the function $f(x)= \begin{cases}\frac{|x|}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}$
30. Discuss the continuity of the following function at $\mathrm{x}=0$
$f(x)=\left\{\begin{array}{c}\frac{x^{4}+2 x^{3}+x^{2}}{\tan ^{-1} x}, x \neq 0 \\ 0, x=0\end{array}\right.$
31. Find the value of k for which the function $f(x)=\left\{\begin{array}{cl}\frac{x^{2}+3 x-10}{x-2}, & x \neq 2 \\ k & , x=2\end{array}\right.$ is continuous at $\mathrm{x}=2$
32. Show that the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{x}{|x|}, & \text { when } x \neq 0 \\ 1, & \text { when } x=0\end{array}\right.$.

Section C

33. Discuss the continuity of the function f , where f is defined by: $\left[f(x)=\left\{\begin{array}{cl}-2, & \text { if } x \leq-1 \\ 2 x, & \text { if }-1<x \leq 1 \\ 2, & \text { if } x>1\end{array}\right.\right.$
34. Find the relationship between a and b , so that the function f defined by $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}a x+1, \text { if } x \leq 3 \\ b x+3, \text { if } x>3\end{array}\right.$ is continuous at $x=3$.
35. Find all points of discontinuity of f where f is defined as follows, $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}|x|+3, x \leq-3 \\ -2 x,-3<x<3 \\ 6 x+2, x \geq 3\end{array}\right.$
36. Discuss the continuity of the function f , where f is defined by: $f(x)= \begin{cases}2 x, & \text { if } x<0 \\ 0, & \text { if } 0 \leq x \leq 1 \\ 4 x, & \text { if } x>1\end{cases}$
37. For what values of λ is the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}\lambda\left(x^{2}-2 x\right), \text { if } x \leq 0 \\ 4 x+1, \text { if } x>0\end{array}\right.$ is continuous at $\mathrm{x}=0$?
38. Find all points of discontinuity of f , where f is defined by: $f(x)=\left\{\begin{array}{clc}|x|+3, & \text { if } & x \leq-3 \\ -2 x, & \text { if } & -3<x<3 \\ 6 x+2 & \text { if } & x \geq 3\end{array}\right.$
39. Find the value of k so that the function f is continuous at the indicated point:
$f(x)=\left\{\begin{array}{c}K x+1 \text { if } x \leq \pi \\ \cos x \text { if } x>\pi\end{array}\right.$ at $x=\pi$
40. Find the values of a and b so that the function f given by $f(x)=\left\{\begin{aligned} & 1, \text { if } x \leq 3 \\ & a x+b, \text { if } 3<x<5 \\ & 7, \text { if } x \geq 5\end{aligned}\right.$ is continuous at $\mathrm{x}=$ 3 and $x=5$

Section D

41. Read the text carefully and answer the questions:

The function $f(x)$ will be discontinuous at $x=a$ if $f(x)$ has

- Discontinuity of first kind : $\lim _{h \rightarrow 0} f(a-h)$ and $\lim _{h \rightarrow 0} f(a+h)$ both exist but are not equal. If is also known as irremovable discontinuity.
- Discontinuity of second kind : If none of the limits $\lim _{h \rightarrow 0} f(a-h)$ and $\lim _{h \rightarrow 0} f(a+h)$ exist.
- Removable discontinuity: $\lim _{h \rightarrow 0} f(a-h)$ and $\lim _{h \rightarrow 0} f(a+h)$ both exist and equal but not equal to $\mathrm{f}(\mathrm{a})$.

$$
f(x)=\left\{\begin{array}{ll}
\frac{x^{2}-9}{x-3}, & \text { for } x \neq 3 \tag{i}\\
4, & \text { for } x=3
\end{array} \text {, then at } \mathrm{x}=3\right.
$$

a) none of these
b) f has irremovable discontinuity
c) f has removable discontinuity
d) f is continuous
(ii) Let $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}x+2, & \text { if } x \leq 4 \\ x+4, & \text { if } x>4\end{array}\right.$ then at $\mathrm{x}=4$
a) f has irremovable discontinuity
b) none of these
c) f has removable discontinuity
d) f is continuous
(iii)

Consider the function $\mathrm{f}(\mathrm{x})$ defined as $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2}, & \text { for } x \neq 2 \\ 5, & \text { for } x=2\end{array}\right.$, then at $\mathrm{x}=2$.
a) f is continuous if $f(2)=3$
b) f has irremovable discontinuity
c) f has removable discontinuity
d) f is continuous
(iv) If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\frac{x-|x|}{x}, & x \neq 0 \\ 2, & x=0\end{array}\right.$, then at $\mathrm{x}=0$.
a) f has irremovable discontinuity
b) f is continuous
c) f has removable discontinuity
d) none of these
(v) If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\frac{e^{x}-1}{\log (1+2 x)}, & \text { if } x \neq 0 \\ 7, & \text { if } x=0\end{array}\right.$, then at $\mathrm{x}=0$.
a) f is continuous if $f(0)=2$
b) f has removable discontinuity
c) f is continuous
d) f has irremovable discontinuity

42. Read the text carefully and answer the questions:

- A function $f(x)$ is said to be continuous in an open interval (a, b) if it is continuous at every point in this interval.
- A function $f(x)$ is said to be continuous in the closed interval [a, b], if $f(x)$ is continuous in (a, b) and $\lim _{h \rightarrow 0} f(a+h)=f(a)$ and $\lim _{h \rightarrow 0} f(b-h)=f(b)$
If function $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{\sin (a+1) x+\sin x}{x} & , x<0 \\ c & , x=0 \text { is continuous at } \mathrm{x}=0 \text {, then } \\ \frac{\sqrt{x+b x^{2}}-\sqrt{x}}{b x^{3 / 2}} & , x>0\end{cases}$
(i) The value of a is
a) $\frac{1}{2}$
b) 0
c) $\frac{-1}{2}$
d) $\frac{-3}{2}$
(ii) The value of b is
a) -1
b) any real number
c) 1
d) 0
(iii) The value of c is
a) -2
b) -1
c) $\frac{1}{2}$
d) 1
(iv) The value of $\mathrm{a}+\mathrm{c}$ is
a) -1
b) -2
c) 0
d) 1
(v) The value of $\mathrm{c}-\mathrm{a}$ is
a) 2
b) -1
c) 1
d) 2

43. Show that the function $f(x)=\left\{\begin{array}{c}x^{m} \sin \left(\frac{1}{x}\right), x \neq 0 \\ 0, x=0\end{array}\right.$ is continuous but not differentiable at $\mathrm{x}=0$, if $0<\mathrm{m}<$
44.
45. Discuss the continuity and differentiability $f(x)= \begin{cases}1-x & , \quad x<1 \\ (1-x)(2-x), & 1 \leq x \leq 2 \\ 3-x & , \quad x>2\end{cases}$
46. Discuss the continuity of the function
$f(x)=\left\{\begin{array}{ccc}-2 & \text { if } & x \leqslant-1 \\ 2 x, & \text { if } & -1<x \leqslant 1 \\ 2 & \text { if } & x>1\end{array}\right.$
47. Find all the points of discontinuity of f defined by $f(x)=|x|-|x+1|$.
48. Find the values of p and q for which $f(x)=\left\{\begin{array}{ll}\frac{1-\sin ^{3} x}{3 \cos ^{2} x}, & \text { if } x<\frac{\pi}{2} \\ p, & \text { if } x=\frac{\pi}{2} \\ \frac{q(1-\sin x)}{(\pi-2 x)^{2}}, & \text { if continuous at } x>\frac{\pi}{2}\end{array}\right.$.
49. The function $f(x)$ will be discontinuous at $x=a$ if $f(x)$ has

- Discontinuity of first kind : $\lim _{h \rightarrow 0} f(a-h)$ and $\lim _{h \rightarrow 0} f(a+h)$ both exist but are not equal. If is also known as irremovable discontinuity.
- Discontinuity of second kind : If none of the limits $\lim _{h \rightarrow 0} f(a-h)$ and $\lim _{h \rightarrow 0} f(a+h)$ exist.
- Removable discontinuity: $\lim _{h \rightarrow 0} f(a-h)$ and $\lim _{h \rightarrow 0} f(a+h)$ both exist and equal but not equal to $\mathrm{f}(\mathrm{a})$.

Based on the above information, answer the following questions.
i. $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-9}{x-3}, & \text { for } x \neq 3 \\ 4, & \text { for } x=3\end{array}\right.$, then at $\mathrm{x}=3$
a. f has removable discontinuity
b. f is continuous
c. f has irremovable discontinuity
d. none of these
ii. Let $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}x+2, & \text { if } x \leq 4 \\ x+4, & \text { if } x>4\end{array}\right.$ then at $\mathrm{x}=4$
a. f is continuous
b. f has removable discontinuity
c. f has irremovable discontinuity
d. none of these
iii. Consider the function $\mathrm{f}(\mathrm{x})$ defined as $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2}, & \text { for } x \neq 2 \\ 5, & \text { for } x=2\end{array}\right.$, then at $\mathrm{x}=2$
a. f has removable discontinuity
b. f has irremovable discontinuity
c. f is continuous
d. /is continuous if $f(2)=3$
iv. If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\frac{x-|x|}{x}, & x \neq 0 \\ 2, & x=0\end{array}\right.$, then at $\mathrm{x}=0$
a. f is continuous
b. f has removable discontinuity
c. f has irremovable discontinuity
d. none of these
v. If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\frac{e^{x}-1}{\log (1+2 x)}, & \text { if } x \neq 0 \\ 7, & \text { if } x=0\end{array}\right.$, then at $\mathrm{x}=0$
a. f is continuous if $f(0)=2$
b. f is continuous
c. f has irremovable discontinuity
d. f has removable discontinuity

