ST. VIVEKANAND PUBLIC SCHOOL, SADABAD

HOLIDAY HOMEWORK

Class 12 - Mathematics

Section A

1. Prove that $\cos ^{-1}\left(\frac{4}{5}\right)+\cos ^{-1}\left(\frac{12}{13}\right)=\cos ^{-1}\left(\frac{33}{65}\right)$.
2. Prove that $\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{8}=\frac{\pi}{4}$.

Section B

3. Prove that: $\tan ^{-1} \frac{63}{16}=\sin ^{-1} \frac{5}{13}+\cos ^{-1} \frac{3}{5}$

Section C

Question No. 4 to 8 are based on the given text. Read the text carefully and answer the questions:
A relation R on a set A is said to be an equivalence relation on A iff it is

- Reflexive i.e., $(a, a) \in R \forall a \in A$.
- Symmetric i.e., $(\mathrm{a}, \mathrm{b}) \in \mathrm{R} \Rightarrow(\mathrm{b}, \mathrm{a}) \in \mathrm{R} \forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$.
- Transitive i.e., $(\mathrm{a}, \mathrm{b}) \in \mathrm{R}$ and $(\mathrm{b}, \mathrm{c}) \in \mathrm{R} \Rightarrow\{\mathrm{a}, \mathrm{c}) \in \mathrm{R} \forall \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{A}$.

4. If the relation $\mathrm{R}=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,1),(3,2),(3,3)\}$ defined on the set $\mathrm{A}-\{1,2,3\}$, then R is
a) reflexive
b) symmetric
c) equivalence
d) transitive
5. If the relation $R=\{(1,2),(2,1),(1,3),(3,1)\}$ defined on the set $A=\{1,2,3\}$, then R is
a) reflexive
b) transitive
c) equivalence
d) symmetric
6. If the relation R on the set N of all natural numbers defined as $R-\{(x, y): y=x+5$ and $x<4\}$, then R is
a) reflexive
b) equivalence
c) symmetric
d) transitive
7. If the relation R on the set $A=\{1,2,3, \ldots .13,14\}$ defined as $R=\{(x, y): 3 x-y=0\}$, then R is
a) none of these
b) symmetric
c) transitive
d) reflexive
8. If the relation R on the set $A=\{1,2,3\}$ defined as $R=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$, then R is
a) transitive only
b) symmetric only
c) equivalence
d) reflexive only
9. Show that the function $\mathrm{f}: \mathrm{R} \rightarrow\{\mathrm{x} \in \mathrm{R}:-1<\mathrm{x}<1\}$ defined by $f(x)=\frac{x}{1+|x|}, \mathrm{x} \in \mathrm{R}$ is one-one and onto
function.
10. Let $\mathrm{A}=\mathrm{R}-\{3\}$ and $\mathrm{B}=\mathrm{R}-\{1\}$. Consider the function $\mathrm{f}: \mathrm{A} \Rightarrow \mathrm{B}$ defined by $f(x)=\left(\frac{x-2}{x-3}\right)$. Is f one-one and onto? Justify your answer.
11. Show that the function $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ defined by $f(x)=\frac{x}{x^{2}+1}, \forall x \in R$, is neither one-one nor onto.
12. Find X and Y , if $2 x+3 y=\left[\begin{array}{ll}2 & 3 \\ 4 & 0\end{array}\right]$ and $3 x+2 y=\left[\begin{array}{cc}2 & -2 \\ -1 & 5\end{array}\right]$
13. Three shopkeepers A, B and C go to a store to buy stationery. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs $₹ 1.25$ and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
14. If $A=\left[\begin{array}{cc}2 & 3 \\ 1 & -4\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -2 \\ -1 & 3\end{array}\right]$ then verify that $(\mathrm{AB})^{-1}=\mathrm{B}^{-1} \mathrm{~A}^{-1}$
15. If $f(x)=a x^{2}+b x+c$ is a quadratic function such that $f(1)=8, f(2)=11$ and $f(-3)=6$, find $f(x)$ by using determinants. Also, find $f(0)$.
16. Verify A (adj. A) $=($ adj. A) $A=|A| I$:

$$
\left[\begin{array}{ccc}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]
$$

17. Given $A=\left[\begin{array}{ccc}2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5\end{array}\right], B=\left[\begin{array}{ccc}1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{array}\right]$, find $B A$ and use this to solve the system of equations y $+2 \mathrm{z}=7, \mathrm{x}-\mathrm{y}=3,2 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}=17$.
