

ST. VIVEKANAND PUBLIC SCHOOL, SADABAD

HOLIDAY HOMEWORK

Class 12 - Mathematics

Section A

Section A				
1. Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$.	[3]			
2. Prove that $\tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{7} + \tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{8} = \frac{\pi}{4}$.	[3]			
Section B				
3. Prove that: $\tan^{-1}\frac{63}{16} = \sin^{-1}\frac{5}{13} + \cos^{-1}\frac{3}{5}$	[4]			
Section C				
Question No. 4 to 8 are based on the given text. Read the text carefully and answer the questions:				
A relation R on a set A is said to be an equivalence relation on A iff it is				
• Reflexive i.e., (a, a) $\in \mathbb{R} \ \forall \ a \in \mathbb{A}$.				
• Symmetric i.e., $(a, b) \in R \Rightarrow (b, a) \in R \forall a, b \in A$.				
• Transitive i.e., (a, b) \in R and (b, c) \in R \Rightarrow {a, c) \in R \forall a,b, c \in A.				
4. If the relation R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)} defined on the set A - {1, 2, 3}, then R is				
a) reflexive b) symmetric				
c) equivalence d) transitive				
5. If the relation $R = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$ defined on the set $A = \{1, 2, 3\}$, then R is				
a) reflexive b) transitive				
c) equivalence d) symmetric				
6. If the relation R on the set N of all natural numbers defined as R - $\{(x, y) : y = x + 5 \text{ and } x < 4\}$, then R is				
a) reflexive b) equivalence				
c) symmetric d) transitive				
7. If the relation R on the set A = {1, 2, 3, 13, 14} defined as R = {(x, y) : $3x - y = 0$ }, then R is				

- a) none of these b) symmetric
- c) transitive d) reflexive

8. If the relation R on the set A = $\{1, 2, 3\}$ defined as R = $\{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$, then R is

	a) transitive only	b) symmetric only	
	c) equivalence	d) reflexive only	
9.	Show that the function f : R \rightarrow {x \in R : -1 < x < 1} defined by $f(x) = \frac{x}{1+ x }$, x \in R is one-one and onto		[5]

function.

- 10. Let A = R {3} and B = R {1}. Consider the function f: A \Rightarrow B defined by $f(x) = \left(\frac{x-2}{x-3}\right)$. Is f one-one and [5] onto? Justify your answer.
- 11. Show that the function $f : R \to R$ defined by $f(x) = \frac{x}{x^2 + 1}$, $\forall x \in R$, is neither one-one nor onto. [5]

12. Find X and Y, if
$$2x + 3y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$$
 and $3x + 2y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}$ [5]

13. Three shopkeepers A, B and C go to a store to buy stationery. A purchases 12 dozen notebooks, 5 dozen pens
and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen
notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs ₹1.25 and a pencil costs
35 paise. Use matrix multiplication to calculate each individual's bill.

14. If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$ then verify that $(AB)^{-1} = B^{-1} A^{-1}$ [5]

15. If $f(x) = ax^2 + bx + c$ is a quadratic function such that f(1) = 8, f(2) = 11 and f(-3) = 6, find f(x) by using [5] determinants. Also, find f(0).

16. Verify A (adj. A) = (adj. A) A =
$$|A|I$$
: [5]

$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$
17. Given $A = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$, find BA and use this to solve the system of equations y
+ 2z = 7, x - y = 3, 2x + 3y + 4z = 17. [5]